Wild-type breast cancer resistance protein (BCRP/ABCG2) is a methotrexate polyglutamate transporter.
نویسندگان
چکیده
The existence of an ATP-dependent methotrexate (MTX) efflux mechanism has long been postulated; however, until recently, the molecular components were largely unknown. We have previously demonstrated a role for the ATP-binding cassette transporter breast cancer resistance protein (BCRP) in MTX resistance (Volk et al., Cancer Res., 62: 5035-5040, 2002). Resistance to this antifolate directly correlated with BCRP expression, and was reversible by the BCRP inhibitors fumitremorgin C and GF120918. Here, we provide evidence for BCRP as a MTX-transporter using an in vitro membrane vesicle system. Inside-out membrane vesicles were generated from both drug-selected and stably transfected cell lines expressing either wild-type (Arg482) or mutant (Gly482) variants of BCRP. In the presence of the wild-type variant of BCRP, transport of MTX into vesicles was ATP-dependent, osmotically sensitive, and inhibited by fumitremorgin C. In contrast, no transport was observed in vesicles containing the mutant form of BCRP. Wild-type BCRP appeared to have low affinity, but high capacity, for the transport of MTX, with an estimated K(m) of 680 micro M and a V(max) of 2400 pmol/mg/min. MTX accumulation was greatly decreased by mitoxantrone, a known BCRP substrate, suggesting competition for transport. Furthermore, and in contrast to the multidrug resistance-associated proteins, BCRP also transported significant amounts of polyglutamylated MTX. Although transport gradually decreased as the polyglutamate chain length increased, both MTX-Glu(2) and MTX-Glu(3) were substrates for BCRP. Together, these data demonstrate that BCRP is a MTX and MTX-polyglutamate transporter and reveal a possible mechanism by which it confers resistance.
منابع مشابه
Overexpression of wild-type breast cancer resistance protein mediates methotrexate resistance.
Previously, we have reported that a multidrug-resistant, mitoxantrone (MX)-selected cell line, MCF7/MX, is highly cross-resistant to the antifolate methotrexate (MTX), because of enhanced ATP-dependent drug efflux (E. L. Volk et al., Cancer Res., 60: 3514-3521, 2000). These cells overexpress the breast cancer resistance protein (BCRP), and resistance to MTX as well as to MX was reversible by th...
متن کاملProtein Mediates Methotrexate Resistance Overexpression of Wild-Type Breast Cancer Resistance
Previously, we have reported that a multidrug-resistant, mitoxantrone (MX)-selected cell line, MCF7/MX, is highly cross-resistant to the antifolate methotrexate (MTX), because of enhanced ATP-dependent drug efflux (E. L. Volk et al., Cancer Res., 60: 3514–3521, 2000). These cells overexpress the breast cancer resistance protein (BCRP), and resistance to MTX as well as to MX was reversible by th...
متن کاملArginine-482 is not essential for transport of antibiotics, primary bile acids and unconjugated sterols by the human breast cancer resistance protein (ABCG2).
The human BCRP (breast cancer resistance protein, also known as ABCG2) is an ABC (ATP-binding cassette) transporter that extrudes various anticancer drugs from cells, causing multidrug resistance. To study the molecular determinants of drug specificity of BCRP in more detail, we have expressed wild-type BCRP (BCRP-R) and the drug-selected cancer cell line-associated R482G (Arg482-->Gly) mutant ...
متن کاملFolate deprivation results in the loss of breast cancer resistance protein (BCRP/ABCG2) expression. A role for BCRP in cellular folate homeostasis.
Breast cancer resistance protein (BCRP/ABCG2) is currently the only ABC transporter that exports mono- and polyglutamates of folates and methotrexate (MTX). Here we explored the relationship between cellular folate status and BCRP expression. Toward this end, MCF-7 breast cancer cells, with low BCRP and moderate multidrug resistance protein 1 (MRP1/ABCC1) levels, and their mitoxantrone (MR)-res...
متن کاملFluorescence resonance energy transfer (FRET) analysis demonstrates dimer/oligomer formation of the human breast cancer resistance protein (BCRP/ABCG2) in intact cells.
The human breast cancer resistance protein (BCRP/ABCG2) is a half ATP-binding cassette (ABC) efflux transporter that plays an important role in drug resistance and disposition. Although BCRP is believed to function as a homodimer or homooligomer, this has not been demonstrated in vivo in intact cells. Therefore, in the present study, we investigated dimer/oligmer formation of BCRP in intact cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 63 17 شماره
صفحات -
تاریخ انتشار 2003